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Abstract. Equilibrium polymerization of a monomer to long chain polymers has been 
shown to be described by the formal n + 0 limit of the "-vector model of magnetism. We 
address the problem of equilibrium polymerization with a substrate represented by a free 
surface. Thus we obtain the mean-field solution of the cubic symmetric n-vector model on 
a semi-infinite lattice and study its thermodynamic properties. We consider the situation 
in which the surface attracts polymer ends. We also examine the possibility of an attractive 
interaction between the surface a n a  polymer bonds. We obtain the proiiier for the densities 
of polymers and of monomers incorporated into polymers. The behaviour of the mean 
molecular weight is also studied. 

1. Introduction 

The problem of thermodynamic properties of flexible polymer chains has been the 
subject of a considerable amount of work [ 11, both experimental and theoretical. In 
particular, it was shown by de Gennes [2] that there exists an analogy between the 
statistics of a self-avoiding walk on a lattice and the magnetic problem of the n-vector 
model, in the formal limit n + 0. This allowed the renormalization group methods, well 
suited to magnetic systems, to be applied to the polymer problem. The correspondence 
was later C I L r n U r u  LO L l l r  1nuruprr crlalll pluorelll "y u c s  cLuIsL.a"x LJJ. 

On a lattice, the analogy between the equilibrium polymerization and the magnetic 
problems was explicitly stated independently by Wheeler and Pfeuty [4] and by Gujrati 
[SI, in slightly different but equivalent ways. The equilibrium polymerization transition 
of elemental sulphur [6] was recognized to be an experimental realization of the 
problem, although it is still an open question whether polymeric rings do play a relevant 
part in this transition. If this is the case, the appropriate model for equilibrium 
polymerization of sulphur would be an n = 1 vector model [7-91. 

A natural question to consider is how the equilibrium polymerization model would 
be affected by the presence of a free surface. For magnetic models, we refer to the 
review article by Binder [ lo]  and Diehl [Ill. For the polymer problem, the effect of 
a free surface, particularly the problem of adsorption of polymer chains by an attractive 
surface, was also considered, both theoretically and experimentally. De Gennes [12] 
proposed a scaling theory for the problem, and early work may be found in the 
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references of his paper. This scaling theory was further developed by des Cloiseaux 
[13]. The scaling predictions were tested through series expansions [14], and the exact 
scaling form in four dimensions was found [IS]. The scaling description was further 
extended by Eisenriegler er al [161, who performed thorough Monte Carlo simulations 
on the problem. 

In this paper, we obtain the mean-field solution for the n-vector model with cubic 
symmetric spins [17] in the presence of a free surface. Although it is usual to consider 
the continuous n-vector model, we choose the cubic symmetric one for its simplicity. 
In the particular limit n + O ,  where we will focus our attention, both models are 
equivalent. It should be remarked, however, that it is possible to find reasonable 
polymeric problems which are equivalent to the n-vector model with continuous 
symmetry for general n ;  this n o  longer the case for the model with discrete cubic spins 
[18]. We then proceed to investigate the properties of the solution of the mean-field 
solution in the n -* 0 limit. Although we obtained the mean-field solution of the model 
in the magnetic representation, the discussion of the physical properties was done in 
polymer variables, since it is as a polymeric system that the model has physical meaning. 
Also, in this paper we focus our attention on the profiles of polymeric densities close 
to the surface. 

It should be stressed that the correspondence between the polymer model and the 
n + O  vector model was originally developed to calculate the limit where scaling laws 
apply [2]. However, it was verified explicitly that mean-field approximations to the 
n + 0 vector model lead to precisely the same results as direct Flory-like approximations 
on the polymer model, both in the problems of equilibrium polymerization [4 ]  and 
equilibrium polymerization in a solvent [191. Therefore, we are confident that our 
calculations lead to the same results, in the n + 0 limit, as direct calculations for the 
polymer model in Flory-like approximations. 

In section 2, we define the model we are considering and present the mean-field 
solution in the presence of a free surface. Some limiting analytic properties of this 
solution are developed. In section 3 we review the correspondence between the model 
considered and the equilibrium polymerization problem in the presence of a surface. 
In particular, we consider two distinct possibilities. In the first case, we investigate the 
effect of an attractive interaction between the substrate and polymer endpoints. This 
situation is related to the problem of grafted polymers [ZO], which has attracted much 
attention recently, particularly related to the study of polymer brushes 1211. The case 
we are studying is the one of 'soft' grafting, such as that encountered when the chain 
is terminated by a special chemical group that adsorbs on to the surface. However, 
both ends of the chain are equally adsorbed in our model. The second investigation 
concerns the problem of the adsorption of polymer bonds on to the surface. We proceed 
in this section by presentingand discussing our results. Finally, we present conclusions 
in section 4. 

2. Definition of the model and mean-field solution 

We consider the n-vector model with cubic symmetric spins [17] defined on a semi- 
infinite d-dimensional lattice bounded by a ( d  - 1)-dimensional hyperplane, which 
represents the substrate. The model is described by the Hamiltonian 
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where the subscripts j and k describe the localization of a site on the lattice. A layer 
parallel to the wall is indexed by j. The substrate occupies the layer j = 0, while the 
free surface hyperplane corresponds to j = 1. The index k defines a site inside a layer. 
Each classical spin S,,, which bas n components, may assume 2n configurations, each 
with only one non-zero component. We choose the norm of the vector to be A. So, 
for example, we may have 

S.,= (0?...,0;in1’2;0;...:0). (2.2) 

When n = 1, the king model is recovered. The interaction is only between spins on 
first-neighbour sites. We choose the magnetic field to point in the 1 direction, and in 
each layer the field corresponds to the sum of a bulk value h with a layer-dependent 
field h,. 

The partition function is given by 

z = Tr[e-8:: j (2.3) 

where p = (k,T)-‘ and the trace operation over the configurations of the spins is 
defined as 

qb is an arbitrary function of the spins and N is the total number of spins. The 
normalization factor in the denominator, although not having any effect on the 
thermodynamic properties of the free energy per kT 

F = - I n Z  (2.5) 

lim F=O (2 .6)  

assures that 

T+m 

even in the formal limit n + 0. 

procedure [22]. Starting with the Gibbs-Bogoliubov inequality for the free energy 
To obtain the mean-field approximation of the model, we follow a standard 

-k ,TF~~=Tr !pH)+k ,TTr !p  Inp) (2.7) 

P O = n  p j ( s j k )  (2.8) 

the product is over all sites in the lattice and we suppose that, given the symmetry of 
the problem, a different function p, is defined on each layer j. We proceed to calculate 
the right-hand side of inequality (2.7) for the Hamiltonian (2.1) and the choice (2.8) 
for p. We obtain 

m - = - I  E {fa[Tr(pjS::’)l2+ b [ T r ( p , S ~ ~ ’ ~ l [ T ~ ( ~ , + , S ~ ~ ~ , ~ ~ ) l ~  

we consider a mean-field ansatz for the density matrix p 

j k  

A j 

-1 (h+hj)[Tr(pjS$’)]+ kBT l T r ( p j  Inp,) (2.9) 

where A = L2 is the number of sites in each layer so that N = AL. Each site has first 
neighbours in the same layer and b first neighbours in the layer just above it. Also, it 
is reasonable to consider only the 1 component of the spin, since the interaction in 
(2.1) is isotropic and the symmetry-breaking field is in this direction. 
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Now we find the best choice for the pj by minimzing @/A with respect to p, under 
the constraints Tr p, = 1, V,. This leads to 

exp( -p~,s$') 
Tr[exp(-pH,S$')] (2.10) 

where 

H, =+J[nm,+b(m,+,+ m , _ , ) ] + ( h +  h,) (2.11) 

m, = Tr(p,S$)). (2.12) 

and the layer magnetization m, is given by 

We may now perform the trace operation in (2.12), with the choice (2.10) for p,, 
obtaining 

m, = &(pH,) (2.13) 

where H, is given by equation (2.11) and r.(x) is the function defined by 

& sinh(& x) 
'"(')= n -1 +cosh(& x) '  

Notice that 

r,(x) =tanh(x) 

and that 

X 
to(x)=- 

1+x2/2' 

To obtain the surface properties, we first find the hulk properties. As we let m, = m 

m = h ( p ( q J m + h ) )  (2.14) 

and h,=O, and recalling that the coordination of the lattice is q =  a+26 ,  we obtain 

and the bulk free energy f per kT per site 

f = - $qpJm2 + r. ( p (qJm + h ) )  (2.15) 

where r.(x) is the function defined by 

n - 1 +cosh(& x) 
n 

r.(x) =In 

Notice that f . ( x )  = (d/dx)r,(x). Particular cases are 

r,(x) = In(cosh x)  

and 

X* 
ro(x)= 1 + ~ .  

L 

It is easy to compare these equations with earlier results. In the limit n + 0, the mean-field 
results for the continuous n -P 0 vector model are recovered [4], and when n = 1 we 
reobtain the mean-field results for the king ferromagnet. 
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The surface free energy f, per kT and per unit area is defined by 
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(2.16) 

From equations (2.9) and (2.16) we obtain 

m2 f , = E  [ -PJ( a f + b m , m , + , )  + r J P H , ) - f ]  (2.17) 

where H, is given by equation (2.11). 
It is not difficult to obtain the phase diagram of the model for general n in the 

mean-field approximation, for the case of zero magnetic field ( h  = h, = 0) and an 
interaction J, between pairs of first-neighbour spins in the surface layer and Jb between 
other pairs of first-neighbour spins. In the case n + 0, this situation corresponds to an 
interaction between the substrate and the polymer bonds. 

The quantities H, will then be given by 

H ,  = &aml + Jbbm, 
Hj=Jb,[am,+b(m,+,+mi-,)I i >  1, 

(2.18) 

Equations (2.13), in this case, allows three types of solution: a paramagneiic solution 
( m i  =0, for all i ) ,  a bulk ferromagnetic solution (mb#O,  where mb=lim,,, mi is the 
bulk magnetization), and a surface ferromagnetic solution ( m ,  # 0, mb = 0) .  It is possible 
to study the stability of these solutions analytically, and the resulting phase diagram 
(for a = 4, b = 1; corresponding to a simple cubic lattice) is shown in figure 1, where 
we introduced the variables 

(2.19) 

BULK FERROMAGNETC lmb.01 

I I I 
a0 a5 1.0 1.5 01 

A 
Figure I. Phase diagram for the semi-infinite n-vector model on a cubic lattice (a= , ,  
b = I )  with h = h, =O,in themean-fieldapproximation.Surfacefirst-neighbaurspinsinteract 
with an exchange constant J ,  and other pairs interact with Jb. Tis defined as J , / B  and A 
stands for J , / J b -  1. Three phases are observed: a paramagnetic, a bulk ferromagnetic and 
a surface ferromagnetic phase. In the " -0  limit, they correspond 10 a non-polymerized, 
a bulk polymerized and a surface polymerized phase, respectively. 
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This phase diagram has the usual features for this kind of model [IO]. The special 
transition point is located at T,=6, A,=O.25. In the vicinity of the special transition 
point, the surface transition line is described approximately by 

' I - 6 =  (4A- l)*.  (2.20) 

This quadratic behaviour is identical to that obtained via a Landau mean-field calcula- 
tion for the king model ( n  = 1) [lo]. It is interesting to observe that all phase boundaries 
are independent of n. This, however, is not true for other results, such as the magnetiz- 
ation profiles. 

We will now concentrate our attention on the n -* 0 vector model. In this limit, 
equations (2.13) and (2.17) become 

mj = t o ( P g )  (2.21) 

(2.22) 

The thermodynamic properties of the cubic n + 0 vector model in the mean-field 
approximation are obtained by solving the coupled equations (2.21) for the layer 
magnetizations, under proper boundary conditions; the free energy of the system may 
then be found through equation (2.22). 

In general, it was necessary to use numerical methods to find the solutions for 
equations (2.21). Moreover, we usually considered only 40 layers, forcing the magnetiz- 
ation to vanish in the zeroth layer (the substrate), and to be equal to the bulk 
magnetization on the 41st layer. In our numerical calculations we found that this 
truncation does not introduce significant errors in the results. For simplicity, we 
particularized our discussion for a cubic lattice limited by a ZD surface, so that n = 4 
and b = i. i n  this case equations ( H i  j become 

m,=1, (P(J(4m,+m2)+h+h,)  

mJ = to(P(J(4mJ + mJ+,+ m,-d+h+h,)) 
(2.23) 

In the particular case h = 0 and h, = 0, j > 1 ,  it is easy to find a solution for equations 
(2.23). valid in the limit of vanishing layer magnetizations and h ,  -0. In this case the 
equations will be asymptotically linear and we find the solution 

j >  1. 

m, = j > l  Phl 
l - P J ( 4 f a )  

m,  = 

where 

This solution is valid for P J S ( p J ) . = d  (the bulk critical value). For P J + ( p J ) c ,  we 
see that a + 1 (no decay in the layer magnetizations) and for PJ -* 0, a + 0. 

3. Correspondence with an equilibrium poiymerization mndei and numericai resuits 

In section 2 we obtained the mean-field solution of the n-vector model with cubic 
symmetric spins. In the formal limit n+O,  this model is not expected to display 
reasonable thermodynamic properties viewed as a magnetic model. For example, 
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negative susceptibilities occur in some regions of its phase diagram [4]. Thus we choose 
to present some thermodynamic properties of the mean-field solution in polymer 
variables, and we start this section by reviewing the connection between the magnetic 
and polymeric models, referring to the paper by Wheeler and Pfeuty [4] for more details. 

We consider a lattice model suitable for describing equilibrium polymerization of 
elemental sulphur, as proposed by Wheeler and Pfeuty [4]. Each site of the lattice 
(monomer) may or may not be incorporated into polymeric chains, which are self- 
and mutually avoiding. The statistical weight of a chain with m monomers will be 

K ,  i f m = 1  
2K, (Kp)"- '  i f m > 1  

The thermodynamic properties of this model may be obtained from the partition 
function 

(3.2) 

where N ,  is the number of chains in the configuration, Nb is the total number of bonds 
and N ,  is the number of chains which comprise one site only. T ( N , ,  Nbi NI; N )  is 
the number of configurations on the N-site lattice described by Np, Nb and NI. This 

(2.3), in the limit n + 0. In the bulk problem (h,  = 0), we identify 

Y =  C C C (2K,)N.(Kp)Nb(f)N~r(N,, N b r  NI; N )  
Np No NI 

partition function may be shown !O be identica! Wi!h !he magnetic parritinn function 

K ,  = pJ K ,  =f(ph)*. (3.3) 
The average number of bonds and polymers are therefore given by 

Thus the density of monomers incorporated into polymers and the density of polymers 
will be 

where e is the dimensionless energy per spin 

Another quantity of interest is the mean molecular weight of the polymers 

(3.7) 

It is straightforward to generalize the correspondences above (equations 3.4-3.7) 
to the situation where the model is defined on a semi-infinite lattice with layer-dependent 

there is no simple way to calculate a layer-dependent mean molecular weight in this 
case; the global value is given by 

2% M=-. 
Q P  

siaeseca; w&gpts. q* and pp shoiild be :ayzi-dqjeii&n: iii ;his case. 
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In the mean-field solution of the bulk problem [4] the energy per spin e will be 
given by 

2 q  m 2 ,  (3.9) 
This expression, in the layer-dependent case, will be replaced by 

e ( j )  = jamf+bmjmj_ , .  (3.10) 
We considered a simple cubic lattice (so that a = 4 and b = 1 ) and investigated two 

distinct situations. In the first one we imagine that the substrate provides an extra 
attractive interaction to the endpoints of polymer chains, so we consider a larger value 
of K, in the vicinity of the substrate. Thus, in this case, polymer chains are grafted 
onto the substrate. The second calculation corresponds to the situation where the 
substrate attracts polymer bonds, thus represented by a larger value of K ,  close to the 
wall. This second situation might be verified experimentally, by measuring the density 
profiles of elemental sulphur close to the wall of a vessel made of an appropriate 
material, at temperatures around the bulk polymerization transition. 

3.1. Endpoints are attracted 

To model this situation we simulated a system in which the statistical weight K ,  in 
the bulk was made very small, while the one associated with the substrate, acting on 
the free surface (first layer), was much larger. The value of K ,  was chosen slightly 
above the bulk critical value. In figure 2( a )  we show the profile obtained for the density 

I I I I 
Ibl - 

lo4 

!$n 

- 

lo5 

lo3 - I 1 I I 
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of polymers and in 2 ( b ) ,  for the density of monomers incorporated into polymers. The 
non-monotonic behaviour of the rp,-profile may be understood by the fact that, since 
the density of endpoints at the surface is much higher than in the bulk, we observe a 
correlation hole effect [l] close to the surface (it is less likely to find a polymer end 
in the close neighbourhood of another one). The rp,-profile shows that, for that given 
set of parameters, the density of monomers incorporated into polymers increases to 
its value in the bulk. In figure 3 we observe that the latter feature does not always 
hold; in fact, as we increased the ratio K ; " " J K y  we obtain a non-monotonic profile 
and even an inversion of the behaviour observed in figure 2 ( b ) .  This feature is due to 
the competition between geometric and energetic factors. The presence of the wall 
restricts the number of ways of attaching a monomer to a given chain (the connectivity 
of the lattice is smaller); on the other hand, the substrate offers an extra attractive 
interaction to polymer endpoints which ultimately induces a larger concentration of 
bonds in its vicinity. If the K;""JkP" ratio is small, the geometric factor dominates 
and the density of monomers incorporated into polymers is smaller than its bulk value; 
in the opposite situation, this behaviour is inverted. 

We extended the idea of having the substrate as an attractor of endpoints. For this 
purpose we considered a model where the first q layers are sensitive to the presence 
of the wall and attract endpoints according to 

(3.11) 

We chose arbitrarily S = 3. Figure 4 shows the profile of the density of polymers. We 
see that the dip observed for q = 1 (also shown in figure 2 ( a ) )  disappears as q increases. 

LAYER NUMBER 
~i~~~~ 3. profile of ,he density of monomers incorporaled into polymers. K,=0.17;  
K Y ' *  = 5 . 0 0 ~  IO-"; ( a )  K;Y"= 2.00x l O P ;  ( b )  K;Y"= 8 . 4 5 ~  IO-'; (e )  K:Y"=2.00. 
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1 5 10 
LAYER NUMBER 

Figure 4. Profile of the density of polymers. 
( b j  q = 3 ;  ( c j  9 = 5 ;  ( d j  q = i u .  

K,=0.17; K ~ ' k = 5 . W ~ 1 0 - 9 ;  ( a )  9=1;  

A possible explanation of this fact is that in the case q = 1, we are imposing an extremely 
large potential gradient; the dip arises as the system is bound to  satisfy markedly 
different boundary conditions within a very small region. The profile of the density of 
monomers incorporated into polymers for q> 1 (not shown here), does not show any 
unexpected behaviour. We just mention that in the vicinity of the wall, this density 
increases with increasing q. 

In figure 5 we show a plot of the mean molecular weight M, as a function of K Y ,  
calculated according to (3.8). Notice that, below the critical bulk value ( K $ " ) , = : ,  

0.01 1 I I  
1.40 ? 2.00 3.00 

K,(.IO-') 
FigureS. Dimensionless meanmolecularweight versus K , .  K Y 1 *  =5.OOx lo-'; K;""=2.00 
(q=Ij .Thearraw shows t h e l o c a t i o n o f ( K ~ ' * ) . .  
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M decreases not to zero, but to a value slightly over unity. This means that for small 
values of K F k ,  we find, far from the wall, one-monomer chains while, close to the 
wall, the chains are somewhat longer. 

In the next subsection we discuss the results obtained for the case where the 
substrate attracts polymer bonds. 

3.2. Bonds are attracted 

This condition is obtained as we let the statistical weight K y ' o n  the free surface (first 
layer) be larger than the value K:" assigned to the remaining layers, 

K;'= KY( i + ~ ) .  (3 .12)  

In this case, we again chose KP" slightly larger than ( K y ) , .  
Here we followed a route similar to that of the last subsection. We started calculating 

the profiles of the density of polymers and of the density of monomers incorporated 
into polymers for various values of A (figures 6 and 7). Figures 6 ( a )  and 6 ( b )  display 
the density profiles for A = 0 and A = 0.1, A = 0 corresponds to the situation where the 
wall just plays the role of a geometric constraint; the A = 0.1 case represents a small 
attractive potential: an effect added to the geometric factor. Both figures show that the 
extra potential produces an increase of q J j )  and qp, ( j )  near the wall. This was of 
course expected. Figures 7 ( a )  and 7 ( b )  show the behaviour of the profiles as one 
increases the potential A. For small values of A, q increases to the bulk value, whereas 

la 

a 

4a6. 

- 
b x - 

4.' 

2. 
10 20 

LAYER NUMBER 

I I 

15.01 / /  

1 10 M 
LAYER NUMBER 

Figure 6. ( a )  Profile of the density o f  polymers. K ,  =5.00r IO-'; KP'*=0.17; (a)  A = o ;  
(b) A = O . l .  ( b )  Profile of the density of monomers incorporated into polymers. K,= 
5,OOxlO-'; K ~ 1 k = 0 . 1 7 ;  (a )  A = O ,  (b) A = O . I .  
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LAYER NUMBER LAYER NUMBER 
Figure7. ( a )  Probleof thedensityofpolymers. K , = 5 . 0 0 ~ 1 0 - ~ ;  K P = O . 1 7 ;  (a )A=o . l ;  
(b)  A =  0.2; (c) A = O . 5 ;  (d) A=0.8. ( b )  Profile of the density of monomers incorporated 
into polymers. K, = 5 . 0 0 ~  IO-'; K:lk =0.17; (a)  A = 0.1; (b) A =  0.2; (c) A = 0.5; (d) A = 0.8. 

for larger A (actually A = 0.2 seems to be the cross-over value), p decreases to the bulk 

ofthe competition between geometric and energetic effects, also applies here to explain 
the change of behaviour with varying A. 

Here again we tried to extend the idea of the substrate attracting bonds. So we 
assumed that the first q layers imposed an additional attraction 

%?!??e. n .c  disc!Esion !h2! !cd to !he cnderstandlng of fip.re 3 (sec!ion 3J) ,  in  terms 

Again we made 6 = 3. The profiles for pp and pr (not presented here) do not show 
any relevant feature. As expected, near the wall the magnitudes of vpp(j)  and qP,( j )  
increase with increasing q. 
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Finally we calculated the mean molecular weight M as a function of K$'*, using 
the ratio (3.8). In the case A=O,  where just the geometric effect is considered, we 
obtain a smooth behaviour (figure 8): for K Y <  (Kb,"'*),, M decreases to  a value a 
little larger than unity. Nevertheless, for sufficiently large A (figure 9). we find a cusp 
at  Kb,"'* = ( K Y ' ) , ;  at lower values of K Y ,  M decreases to about unity. We are now 
investigating the reason for this surprising behaviour. At present we understand it as 
follows. Although we plot M against K y ,  our physical system consists of two 

Flgure 0. Dimensionless mean molecular weight versus K P .  K ,  = 5 . 0 0 ~  W9; A =O. The 
arrow shows the location of ( K P * ) , .  The inset shows that for low values of K Y ,  M 
converges to a finite value. 

Figure 9. Dimensionless mean molecular weight versus K Y ' .  K ,  =J.OOx 10.'; A = O . 5 .  
The arrow shows the location of (K: ' * ) , .  The inset shows that for low values of KP, 
M converges to a finite value. 
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subsystems: one represented by the bulk, where the properties are determined by K:" 
(and K , ) ,  and another one, the neighbourhood of the wall, where the properties are 
determined by KTf (and K , ) .  As Kbb"'' decreases beyond (ICY),, we start to sample 
a different subsystem, detached from the whole: the vicinity of the wall, which has its 
M versus K F f  curve. The cusp is then a consequence of the cross-over between the 
bulk-dominated and the surface-dominated regimes. 

4. Conclusion 

A mean-field solution for the problem of equilibrium polymerization with a wall has 
been presented. By extending the equivalence between the magnetic n-vector model 
in the n + 0 limit, we have been able to obtain density profiles and the mean molecular 
weight of a system constituted of one type of polymer. Two particular cases were 
studied: the case in which polymer ends are adsorbed on to the surface (grafted 
polymers) and the case where polymer bonds are adsorbed (polymer adsorption), and 
we considered in some detail density profiles close to the surface. In these systems, 
the investigation of adsorption isotherms and scaling properties is an important subject 
and will be the object of later work. 
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